Code: 23CE3201, 23ME3201

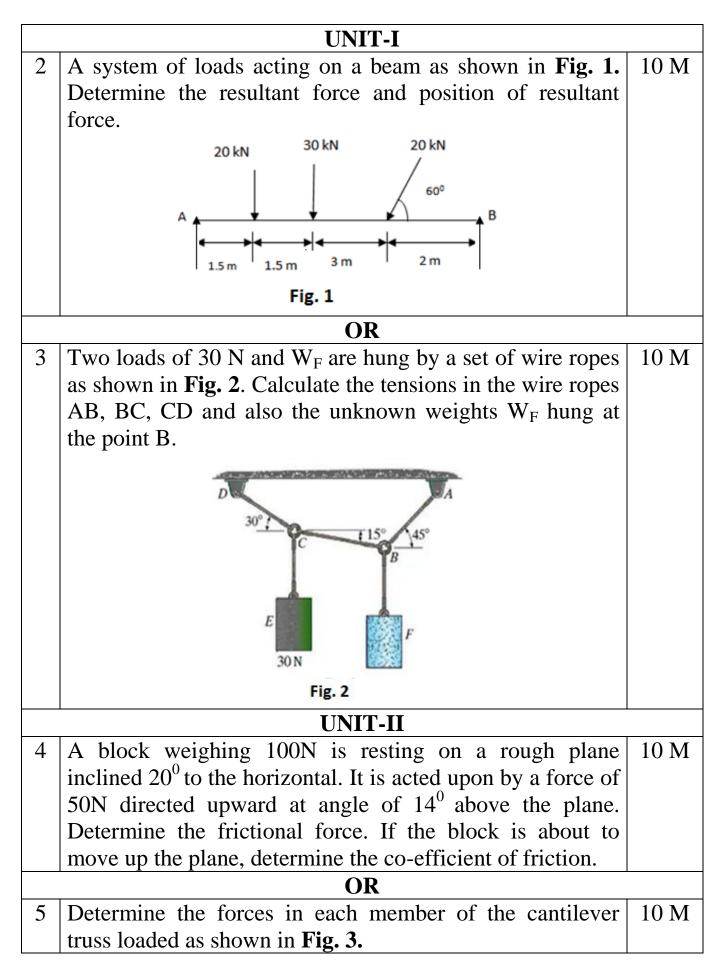
I B.Tech - II Semester – Supplementary Examinations DECEMBER 2024

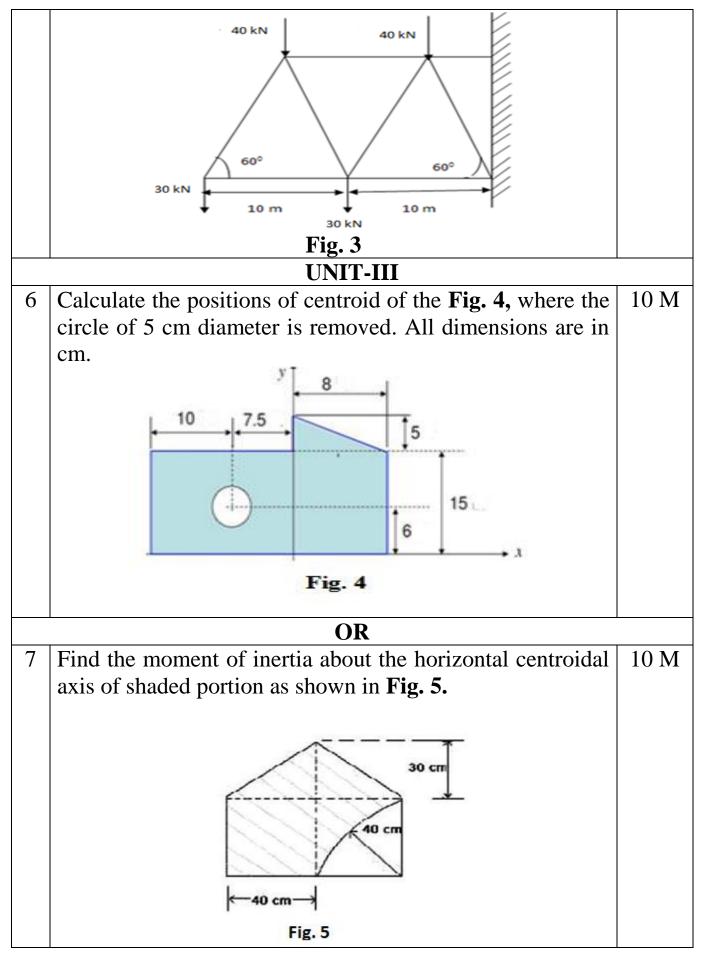
ENGINEERING MECHANICS (Common for CE, ME)

Duration: 3 hours

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.


- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.


4. All parts of Question paper must be answered in one place.

PART – A								
1.a)	Recall couple. Give two examples.							
1.b)	Define parallelogram law of forces.							
1.c)	What is meant by wedge and write its purpose.							
1.d)	Write at least two assumptions of analysis of truss.							
1.e)	State and prove perpendicular axis theorem.							
1.f)	With the help of a sketch, show where does the centroid of							
	a semicircle and triangle lie from base.							
1.g)	State and prove work energy principle.							
1.h)	What are the tangential and normal components of							
	acceleration curvilinear motion.							
1.i)	What is the difference between linear and angular							
	acceleration.							
1.j)	What is rigid body motion write an example.							

PART – B

				Max. Marks

Page 3 of 4

	UNIT-IV						
8	Two trains P and Q leave the same station on parallel	10 M					
	lines. Train P starts at rest with uniform acceleration of 0.2						
	rad/s ² attains a speed of 10 m/s. Further the speed is kept						
	constant. Train Q leaves 30 seconds later with uniform						
	acceleration of 0.5 m/s^2 from rest and attains a maximum						
	speed of 20 m/s, when will train Q overtake train P.						
	OR						
9	Two blocks of masses M1 and M2 are connected by a	10 M					
	string as shown in Fig. 6. below Assuming the coefficient						
	of friction between block M1 and the horizontal surface to						
	be μ if the system is released from rest, find velocity of the						
	block A after it has moved a distance of 1m Assume						
	M1=100kg and M2=150kg and μ =0.20.						
	M						
	P						
	M ₂						
	Fig. 6						
	UNIT-V						
10	A wheel has an initial clock wise angular velocity of	10 M					
	8 rad/s and a constant angular acceleration of 2 rad/s ² .						
	Determine the number of revolutions the wheel must						
	undergo to acquire a clockwise angular velocity of						
	15 rad/s. What is the time required?						
OR							
11	A flywheel of 15kg mass and 20cm radius of gyration is	10 M					
	directly coupled to an electric motor which can develop						
	10KW power when rotating at a speed of 1200rpm.						
	Determine the driving torque to maintain this speed. If the						
	power is switched off and the flywheel comes to rest in						
	20 seconds determine the uniform retarding torque on the						
	flywheel.						